Marcy Lab School Docs
  • Welcome
  • Student Guidelines & Policies
    • Student Handbook
    • AI Policy
    • Academic Calendar
  • Environment Setup
    • Local Environment Setup - Mac
    • Local Environment Setup - Windows
    • GitHub Setup
    • Postgres Setup
  • How-Tos
    • How To Code at Marcy: Code Style Guide
    • How to Do Short Response and Coding Assignments
    • How to Debug
    • How to PEDAC
    • How to Create A GitHub Organization and Scrumboard
    • How to Create Projects with Vite
    • How to Deploy on GitHub Pages
    • How to Deploy on Render
    • How to Test your API with Postman
  • Mod 0 - Command Line Interfaces, Git, and GitHub
    • Overview
    • 1. Command Line Interfaces
    • 2. Git & GitHub
    • 3. Git Pulling & Merging
    • 4. Git Branching & PRs
  • Mod 1 - JavaScript Fundamentals
    • Overview
    • 1. Intro to Programming
    • 2. Errors
    • 3. Node & Node Modules
    • 4. Variables, Functions & String Methods
    • 5. Control Flow, typeof, and Math
    • 6. Loops
    • 7. Arrays
    • 8. Objects
    • 9. Higher Order Functions: Callbacks
    • 10. Higher Order Functions: Array Methods
    • 11. Regex
  • Mod 2 - HTML, CSS & the DOM
    • Overview
    • 1. HTML
    • 2. CSS
    • 3. Accessibility (a11y)
    • 4. The Document Object Model (DOM) API
    • 5. Events
    • 6. Forms
    • 7. The Box Model and Positioning
    • 8. Flexbox
    • 9. Grid & Media Queries
    • 10. ESModules
    • 11. Vite
    • 12. LocalStorage
  • Mod 3 - Async & APIs
    • Overview
    • 1. Promises
    • 2. Fetch
    • 3. Building a Fetching App
    • 4. Async & Await
    • 5. A Generic Fetch Handler
  • Mod 4 - Project Week!
    • Important How Tos and Guides
      • How to Create a GitHub Organization and Scrum Board
      • How To Start a Project with Vite
      • How To Deploy a Project with GitHub Pages
    • Project Week Overview
    • Agile Methodologies
    • Deliverables & Milestones
    • Technical Requirements Checklist
    • Free API List
    • Collaborative GitHub
  • Mod 5 - Object-Oriented Programming
    • Overview
    • 1. Intro to OOP, Encapsulation, Factory Functions, and Closure
    • 2. Classes
    • 3. Private & Static
    • 4. UML Diagrams & Has Many/Belongs To Relationships
    • 5. Challenge: Implementing Has Many/Belongs To
    • 6. Inheritance
    • 7. Polymorphism
    • 8. Review and Practice
    • MDN: Object Prototypes
  • Mod 6 - Data Structures & Algorithms
    • Overview
    • Important How Tos and Guides
      • How to Debug
      • How to PEDAC
    • 1. Nodes & Linked Lists
    • 2. Singly & Doubly Linked Lists
    • 3. Stacks & Queues
    • 4. Recursion
    • 5. Trees
  • Mod 7 - React
    • Overview
    • Important How Tos and Guides
      • How to Create Projects with Vite
      • How to Deploy on GitHub Pages
    • 1. Intro to React
    • 2. Events, State, and Forms
    • 3. Fetching with useEffect
    • 4. React Router
    • 5. Building a Flashcards App
    • 6. React Context
    • 7. Global Context Pattern
  • Mod 8 - Backend
    • Overview
    • Important How Tos and Guides
      • How to Deploy on Render
      • How to Test your API with Postman
      • Postgres Setup
    • 1. Intro to Express
    • 2. Building a Static Web Server with Middleware
    • 3. Securing API Keys and Environment Variables
    • 4. RESTful CRUD API
    • 5. Model-View-Controller Architecture
    • 6. SQL and Databases
    • 7. JOIN (Association) SQL Queries
    • 8. Knex
    • 9. Your First Fullstack App!
    • 10. Migrations & Seeds
    • 11. Schema Design & Normalization
    • 12. Hashing Passwords with Bcrypt
    • 13. React Express Auth Template Overview
  • Mod 9 - Civic Tech Hackathon
    • Overview
    • Rubric
  • Mod 10 - Capstone
    • Overview
Powered by GitBook
On this page
  • Table of Contents
  • Quick Tips
  • Types
  • References
  • Objects
  • Arrays
  • Destructuring
  • Strings
  • Functions
  • Arrow Functions
  • Classes and Constructors
  • Modules
  • Iterators and Generators
  • Properties
  • Variables
  • Hoisting
  • Comparison Operators and Equality
  • Blocks
  • Control Statements
  • Comments
  • Whitespace
  • Commas
  • Semicolons
  • Type Casting and Coercion
  • Naming Conventions
  • Accessors
  • Events
  • jQuery
  • ECMAScript 5 Compatibility
  • ECMAScript 6+ (ES 2015+) Styles
  • Standard Library
  • Testing
  • Performance
  • Resources
  1. How-Tos

How To Code at Marcy: Code Style Guide

PreviousHow-TosNextHow to Do Short Response and Coding Assignments

Last updated 22 days ago

Note:

This guide assumes you are using , and requires that you use or the equivalent. It also assumes you install shims/polyfills in your app with or the equivalent.

This Guide is based on the Airbnb style guide.

Table of Contents

Quick Tips

  1. Prefer meaningful variable and function names

    • ❌ Bad:

      const d = (x) => {
        return x * 2;
      }
    • ✅ Good:

      const doubleValue = (number) => {
        return number * 2;
      }
  2. Write small, pure functions

    • ❌ Bad:

      const updateUIAndSendData = (user) => {
        // logic for rendering
      
        // logic for sending data to server
      
        // logic for logging activity
      }
    • ✅ Good:

      const renderUser = (user) => { /* logic for rendering */ }
      const sendToServer = (user) => { /* logic for sending data */ }
      const logActivity = (user) => { /* logic for logging activity */ }
      
      const handleUserUpdate = (user) => {
        renderUser(user);
        sendToServer(user);
        logActivity(user);
      }
  3. Use consistent indentation and formatting

    • ❌ Bad:

      const test = () => {
      let x=1;
         if(x>0){
      console.log(x);}
      }
    • ✅ Good:

      const test = () => {
        let x = 1;
        if (x > 0) {
          console.log(x);
        }
      }
  4. DRY (Don't Repeat Yourself)

    • ❌ Bad:

      console.log('User joined: ' + user.name);
      console.log('User joined: ' + user.name);
    • ✅ Good:

      const logUserJoin = (user) => {
        console.log('User joined: ' + user.name);
      }
      logUserJoin(user);
      logUserJoin(user);
  5. Use strict equality (=== and !==)

    • ❌ Bad:

      if (value == '5') { /* type coercion risk */ }
    • ✅ Good:

      if (value === '5') { /* strict type match */ }
  6. Use early returns in functions

    • ❌ Bad:

      const process = (user) => {
        if (user) {
          if (user.isActive) {
            sendEmail(user);
          }
        }
      }
    • ✅ Good:

      const process = (user) => {
        if (!user || !user.isActive) return;
        sendEmail(user);
      }
  7. Avoid deeply nested code

    • ❌ Bad:

      if (a) {
        if (b) {
          if (c) {
            doSomething();
          }
        }
      }
    • ✅ Good:

      if (!a || !b || !c) return;
      doSomething();

Types

    • string

    • number

    • boolean

    • null

    • undefined

    • symbol

    • bigint

    const foo = 1;
    let bar = foo;
    
    bar = 9;
    
    console.log(foo, bar); // => 1, 9
    • Symbols and BigInts cannot be faithfully polyfilled, so they should not be used when targeting browsers/environments that don’t support them natively.

Polyfill is a term that originated from combining "poly," meaning many, and "fill," implying filling in the gaps. In the context of web development and programming with JavaScript, a polyfill is a piece of code that provides modern functionality on older browsers that do not naturally support it.

When a new web standard or API is introduced, it may take some time for all browsers to fully implement and support it. During this transition period, developers may use polyfills to ensure that their code works consistently across different browsers.

    • object

    • array

    • function

    const foo = [1, 2];
    const bar = foo;
    
    bar[0] = 9;
    
    console.log(foo[0], bar[0]); // => 9, 9

References

  • Why? This ensures that you can’t reassign your references, which can lead to bugs and difficulty comprehending code.

    // bad
    var a = 1;
    var b = 2;
    
    // good
    const a = 1;
    const b = 2;
  • Why? let is block-scoped rather than function-scoped like var.

    // bad
    var count = 1;
    if (true) {
      count += 1;
    }
    
    // good, use the let.
    let count = 1;
    if (true) {
      count += 1;
    }
  • // const and let only exist in the blocks defined in.
    {
      let a = 1;
      const b = 1;
      var c = 1;
    }
    console.log(a); // ReferenceError
    console.log(b); // ReferenceError
    console.log(c); // Prints 1

    The above code shows that referencing a and b will produce a ReferenceError, while c contains the number. This is because a and b are block-scoped, while c is scoped to the containing function.

Objects

  • // bad
    const item = new Object();
    
    // good
    const item = {};
  • Why? They allow you to define all the properties of an object in one place.

    
    function getKey(k) {
      return `a key named ${k}`;
    }
    
    // bad
    const obj = {
      id: 5,
      name: 'San Francisco',
    };
    obj[getKey('enabled')] = true;
    
    // good
    const obj = {
      id: 5,
      name: 'San Francisco',
      [getKey('enabled')]: true,
    };
  • // bad
    const atom = {
      value: 1,
    
      addValue: function (value) {
        return atom.value + value;
      },
    };
    
    // good
    const atom = {
      value: 1,
    
      addValue(value) {
        return atom.value + value;
      },
    };
  • Why? It is shorter and descriptive.

    const lukeSkywalker = 'Luke Skywalker';
    
    // bad
    const obj = {
      lukeSkywalker: lukeSkywalker,
    };
    
    // good
    const obj = {
      lukeSkywalker,
    };
  • Why? It’s easier to tell which properties are using the shorthand.

    const anakinSkywalker = 'Anakin Skywalker';
    const lukeSkywalker = 'Luke Skywalker';
    
    // bad
    const obj = {
      episodeOne: 1,
      twoJediWalkIntoACantina: 2,
      lukeSkywalker,
      episodeThree: 3,
      mayTheFourth: 4,
      anakinSkywalker,
    };
    
    // good
    const obj = {
      lukeSkywalker,
      anakinSkywalker,
      episodeOne: 1,
      twoJediWalkIntoACantina: 2,
      episodeThree: 3,
      mayTheFourth: 4,
    };
  • Why? In general we consider it subjectively easier to read. It improves syntax highlighting, and is also more easily optimized by many JS engines.

    // bad
    const bad = {
      'foo': 3,
      'bar': 4,
      'data-blah': 5,
    };
    
    // good
    const good = {
      foo: 3,
      bar: 4,
      'data-blah': 5,
    };
  • // bad
    console.log(object.hasOwnProperty(key));
    
    // good
    console.log(Object.prototype.hasOwnProperty.call(object, key));
    
    // better
    const has = Object.prototype.hasOwnProperty; // cache the lookup once, in module scope.
    console.log(has.call(object, key));
    
    // best
    console.log(Object.hasOwn(object, key)); // only supported in browsers that support ES2022
    
    /* or */
    import has from 'has'; // https://www.npmjs.com/package/has
    console.log(has(object, key));
    /* or */
    console.log(Object.hasOwn(object, key)); // https://www.npmjs.com/package/object.hasown
  • // very bad
    const original = { a: 1, b: 2 };
    const copy = Object.assign(original, { c: 3 }); // this mutates `original` ಠ_ಠ
    delete copy.a; // so does this
    
    // bad
    const original = { a: 1, b: 2 };
    const copy = Object.assign({}, original, { c: 3 }); // copy => { a: 1, b: 2, c: 3 }
    
    // good
    const original = { a: 1, b: 2 };
    const copy = { ...original, c: 3 }; // copy => { a: 1, b: 2, c: 3 }
    
    const { a, ...noA } = copy; // noA => { b: 2, c: 3 }

Arrays

  • // bad
    const items = new Array();
    
    // good
    const items = [];
  • const someStack = [];
    
    // bad
    someStack[someStack.length] = 'abracadabra';
    
    // good
    someStack.push('abracadabra');
  • // bad
    const len = items.length;
    const itemsCopy = [];
    let i;
    
    for (i = 0; i < len; i += 1) {
      itemsCopy[i] = items[i];
    }
    
    // good
    const itemsCopy = [...items];
  • const foo = document.querySelectorAll('.foo');
    
    // good
    const nodes = Array.from(foo);
    
    // best
    const nodes = [...foo];
  • const arrLike = { 0: 'foo', 1: 'bar', 2: 'baz', length: 3 };
    
    // bad
    const arr = Array.prototype.slice.call(arrLike);
    
    // good
    const arr = Array.from(arrLike);
  • // bad
    const baz = [...foo].map(bar);
    
    // good
    const baz = Array.from(foo, bar);
  • // good
    [1, 2, 3].map((x) => {
      const y = x + 1;
      return x * y;
    });
    
    // good
    [1, 2, 3].map((x) => x + 1);
    
    // bad - no returned value means `acc` becomes undefined after the first iteration
    [[0, 1], [2, 3], [4, 5]].reduce((acc, item, index) => {
      const flatten = acc.concat(item);
    });
    
    // good
    [[0, 1], [2, 3], [4, 5]].reduce((acc, item, index) => {
      const flatten = acc.concat(item);
      return flatten;
    });
    
    // bad
    inbox.filter((msg) => {
      const { subject, author } = msg;
      if (subject === 'Mockingbird') {
        return author === 'Harper Lee';
      } else {
        return false;
      }
    });
    
    // good
    inbox.filter((msg) => {
      const { subject, author } = msg;
      if (subject === 'Mockingbird') {
        return author === 'Harper Lee';
      }
    
      return false;
    });
  • // bad
    const arr = [
      [0, 1], [2, 3], [4, 5],
    ];
    
    const objectInArray = [{
      id: 1,
    }, {
      id: 2,
    }];
    
    const numberInArray = [
      1, 2,
    ];
    
    // good
    const arr = [[0, 1], [2, 3], [4, 5]];
    
    const objectInArray = [
      {
        id: 1,
      },
      {
        id: 2,
      },
    ];
    
    const numberInArray = [
      1,
      2,
    ];

Destructuring

  • Why? Destructuring saves you from creating temporary references for those properties, and from repetitive access of the object. Repeating object access creates more repetitive code, requires more reading, and creates more opportunities for mistakes. Destructuring objects also provides a single site of definition of the object structure that is used in the block, rather than requiring reading the entire block to determine what is used.

    // bad
    function getFullName(user) {
      const firstName = user.firstName;
      const lastName = user.lastName;
    
      return `${firstName} ${lastName}`;
    }
    
    // good
    function getFullName(user) {
      const { firstName, lastName } = user;
      return `${firstName} ${lastName}`;
    }
    
    // best
    function getFullName({ firstName, lastName }) {
      return `${firstName} ${lastName}`;
    }
  • const arr = [1, 2, 3, 4];
    
    // bad
    const first = arr[0];
    const second = arr[1];
    
    // good
    const [first, second] = arr;
  • Why? You can add new properties over time or change the order of things without breaking call sites.

    // bad
    function processInput(input) {
      // then a miracle occurs
      return [left, right, top, bottom];
    }
    
    // the caller needs to think about the order of return data
    const [left, __, top] = processInput(input);
    
    // good
    function processInput(input) {
      // then a miracle occurs
      return { left, right, top, bottom };
    }
    
    // the caller selects only the data they need
    const { left, top } = processInput(input);

Strings

  • // bad
    const name = "Capt. Janeway";
    
    // bad - template literals should contain interpolation or newlines
    const name = `Capt. Janeway`;
    
    // good
    const name = 'Capt. Janeway';
  • Why? Broken strings are painful to work with and make code less searchable.

    // bad
    const errorMessage = 'This is a super long error that was thrown because \
    of Batman. When you stop to think about how Batman had anything to do \
    with this, you would get nowhere \
    fast.';
    
    // bad
    const errorMessage = 'This is a super long error that was thrown because ' +
      'of Batman. When you stop to think about how Batman had anything to do ' +
      'with this, you would get nowhere fast.';
    
    // good
    const errorMessage = 'This is a super long error that was thrown because of Batman. When you stop to think about how Batman had anything to do with this, you would get nowhere fast.';
  • Why? Template strings give you a readable, concise syntax with proper newlines and string interpolation features.

    // bad
    function sayHi(name) {
      return 'How are you, ' + name + '?';
    }
    
    // bad
    function sayHi(name) {
      return ['How are you, ', name, '?'].join();
    }
    
    // bad
    function sayHi(name) {
      return `How are you, ${ name }?`;
    }
    
    // good
    function sayHi(name) {
      return `How are you, ${name}?`;
    }
  • Why? Backslashes harm readability, thus they should only be present when necessary.

    // bad
    const foo = '\'this\' \i\s \"quoted\"';
    
    // good
    const foo = '\'this\' is "quoted"';
    const foo = `my name is '${name}'`;

Functions

  • // bad
    function foo() {
      // ...
    }
    
    // bad
    const foo = function () {
      // ...
    };
    
    // good
    // lexical name distinguished from the variable-referenced invocation(s)
    const short = function longUniqueMoreDescriptiveLexicalFoo() {
      // ...
    };
  • Why? An immediately invoked function expression is a single unit - wrapping both it, and its invocation parens, in parens, cleanly expresses this. Note that in a world with modules everywhere, you almost never need an IIFE.

    // immediately-invoked function expression (IIFE)
    (function () {
      console.log('Welcome to the Internet. Please follow me.');
    }());
  • // bad
    if (currentUser) {
      function test() {
        console.log('Nope.');
      }
    }
    
    // good
    let test;
    if (currentUser) {
      test = () => {
        console.log('Yup.');
      };
    }
  • // bad
    function foo(name, options, arguments) {
      // ...
    }
    
    // good
    function foo(name, options, args) {
      // ...
    }
  • Why? ... is explicit about which arguments you want pulled. Plus, rest arguments are a real Array, and not merely Array-like like arguments.

    // bad
    function concatenateAll() {
      const args = Array.prototype.slice.call(arguments);
      return args.join('');
    }
    
    // good
    function concatenateAll(...args) {
      return args.join('');
    }
  • // really bad
    function handleThings(opts) {
      // No! We shouldn’t mutate function arguments.
      // Double bad: if opts is falsy it'll be set to an object which may
      // be what you want but it can introduce subtle bugs.
      opts = opts || {};
      // ...
    }
    
    // still bad
    function handleThings(opts) {
      if (opts === void 0) {
        opts = {};
      }
      // ...
    }
    
    // good
    function handleThings(opts = {}) {
      // ...
    }
  • Why? They are confusing to reason about.

    let b = 1;
    // bad
    function count(a = b++) {
      console.log(a);
    }
    count();  // 1
    count();  // 2
    count(3); // 3
    count();  // 3
  • // bad
    function handleThings(opts = {}, name) {
      // ...
    }
    
    // good
    function handleThings(name, opts = {}) {
      // ...
    }
  • Why? Creating a function in this way evaluates a string similarly to eval(), which opens vulnerabilities.

    // bad
    const add = new Function('a', 'b', 'return a + b');
    
    // still bad
    const subtract = Function('a', 'b', 'return a - b');
  • Why? Consistency is good, and you shouldn’t have to add or remove a space when adding or removing a name.

    // bad
    const f = function(){};
    const g = function (){};
    const h = function() {};
    
    // good
    const x = function () {};
    const y = function a() {};
  • Why? Manipulating objects passed in as parameters can cause unwanted variable side effects in the original caller.

    // bad
    function f1(obj) {
      obj.key = 1;
    }
    
    // good
    function f2(obj) {
      const key = Object.prototype.hasOwnProperty.call(obj, 'key') ? obj.key : 1;
    }
  • Why? Reassigning parameters can lead to unexpected behavior, especially when accessing the arguments object. It can also cause optimization issues, especially in V8.

    // bad
    function f1(a) {
      a = 1;
      // ...
    }
    
    function f2(a) {
      if (!a) { a = 1; }
      // ...
    }
    
    // good
    function f3(a) {
      const b = a || 1;
      // ...
    }
    
    function f4(a = 1) {
      // ...
    }
  • Why? It’s cleaner, you don’t need to supply a context, and you can not easily compose new with apply.

    // bad
    const x = [1, 2, 3, 4, 5];
    console.log.apply(console, x);
    
    // good
    const x = [1, 2, 3, 4, 5];
    console.log(...x);
    
    // bad
    new (Function.prototype.bind.apply(Date, [null, 2016, 8, 5]));
    
    // good
    new Date(...[2016, 8, 5]);
  • // bad
    function foo(bar,
                 baz,
                 quux) {
      // ...
    }
    
    // good
    function foo(
      bar,
      baz,
      quux,
    ) {
      // ...
    }
    
    // bad
    console.log(foo,
      bar,
      baz);
    
    // good
    console.log(
      foo,
      bar,
      baz,
    );

Arrow Functions

  • Why? It creates a version of the function that executes in the context of this, which is usually what you want, and is a more concise syntax.

    Why not? If you have a fairly complicated function, you might move that logic out into its own named function expression.

    // bad
    [1, 2, 3].map(function (x) {
      const y = x + 1;
      return x * y;
    });
    
    // good
    [1, 2, 3].map((x) => {
      const y = x + 1;
      return x * y;
    });
  • Why? Syntactic sugar. It reads well when multiple functions are chained together.

    // bad
    [1, 2, 3].map((number) => {
      const nextNumber = number + 1;
      `A string containing the ${nextNumber}.`;
    });
    
    // good
    [1, 2, 3].map((number) => `A string containing the ${number + 1}.`);
    
    // good
    [1, 2, 3].map((number) => {
      const nextNumber = number + 1;
      return `A string containing the ${nextNumber}.`;
    });
    
    // good
    [1, 2, 3].map((number, index) => ({
      [index]: number,
    }));
    
    // No implicit return with side effects
    function foo(callback) {
      const val = callback();
      if (val === true) {
        // Do something if callback returns true
      }
    }
    
    let bool = false;
    
    // bad
    foo(() => bool = true);
    
    // good
    foo(() => {
      bool = true;
    });
  • Why? It shows clearly where the function starts and ends.

    // bad
    ['get', 'post', 'put'].map((httpMethod) => Object.prototype.hasOwnProperty.call(
        httpMagicObjectWithAVeryLongName,
        httpMethod,
      )
    );
    
    // good
    ['get', 'post', 'put'].map((httpMethod) => (
      Object.prototype.hasOwnProperty.call(
        httpMagicObjectWithAVeryLongName,
        httpMethod,
      )
    ));
  • Why? Minimizes diff churn when adding or removing arguments.

    // bad
    [1, 2, 3].map(x => x * x);
    
    // good
    [1, 2, 3].map((x) => x * x);
    
    // bad
    [1, 2, 3].map(number => (
      `A long string with the ${number}. It’s so long that we don’t want it to take up space on the .map line!`
    ));
    
    // good
    [1, 2, 3].map((number) => (
      `A long string with the ${number}. It’s so long that we don’t want it to take up space on the .map line!`
    ));
    
    // bad
    [1, 2, 3].map(x => {
      const y = x + 1;
      return x * y;
    });
    
    // good
    [1, 2, 3].map((x) => {
      const y = x + 1;
      return x * y;
    });
  • // bad
    const itemHeight = (item) => item.height <= 256 ? item.largeSize : item.smallSize;
    
    // bad
    const itemHeight = (item) => item.height >= 256 ? item.largeSize : item.smallSize;
    
    // good
    const itemHeight = (item) => (item.height <= 256 ? item.largeSize : item.smallSize);
    
    // good
    const itemHeight = (item) => {
      const { height, largeSize, smallSize } = item;
      return height <= 256 ? largeSize : smallSize;
    };
  • // bad
    (foo) =>
      bar;
    
    (foo) =>
      (bar);
    
    // good
    (foo) => bar;
    (foo) => (bar);
    (foo) => (
       bar
    )

Classes and Constructors

  • Why? class syntax is more concise and easier to reason about.

    // bad
    function Queue(contents = []) {
      this.queue = [...contents];
    }
    Queue.prototype.pop = function () {
      const value = this.queue[0];
      this.queue.splice(0, 1);
      return value;
    };
    
    // good
    class Queue {
      constructor(contents = []) {
        this.queue = [...contents];
      }
      pop() {
        const value = this.queue[0];
        this.queue.splice(0, 1);
        return value;
      }
    }
  • Why? It is a built-in way to inherit prototype functionality without breaking instanceof.

    // bad
    const inherits = require('inherits');
    function PeekableQueue(contents) {
      Queue.apply(this, contents);
    }
    inherits(PeekableQueue, Queue);
    PeekableQueue.prototype.peek = function () {
      return this.queue[0];
    };
    
    // good
    class PeekableQueue extends Queue {
      peek() {
        return this.queue[0];
      }
    }
  • // bad
    Jedi.prototype.jump = function () {
      this.jumping = true;
      return true;
    };
    
    Jedi.prototype.setHeight = function (height) {
      this.height = height;
    };
    
    const luke = new Jedi();
    luke.jump(); // => true
    luke.setHeight(20); // => undefined
    
    // good
    class Jedi {
      jump() {
        this.jumping = true;
        return this;
      }
    
      setHeight(height) {
        this.height = height;
        return this;
      }
    }
    
    const luke = new Jedi();
    
    luke.jump()
      .setHeight(20);
  • class Jedi {
      constructor(options = {}) {
        this.name = options.name || 'no name';
      }
    
      getName() {
        return this.name;
      }
    
      toString() {
        return `Jedi - ${this.getName()}`;
      }
    }
  • // bad
    class Jedi {
      constructor() {}
    
      getName() {
        return this.name;
      }
    }
    
    // bad
    class Rey extends Jedi {
      constructor(...args) {
        super(...args);
      }
    }
    
    // good
    class Rey extends Jedi {
      constructor(...args) {
        super(...args);
        this.name = 'Rey';
      }
    }
  • Why? Duplicate class member declarations will silently prefer the last one - having duplicates is almost certainly a bug.

    // bad
    class Foo {
      bar() { return 1; }
      bar() { return 2; }
    }
    
    // good
    class Foo {
      bar() { return 1; }
    }
    
    // good
    class Foo {
      bar() { return 2; }
    }
  • // bad
    class Foo {
      bar() {
        console.log('bar');
      }
    }
    
    // good - this is used
    class Foo {
      bar() {
        console.log(this.bar);
      }
    }
    
    // good - constructor is exempt
    class Foo {
      constructor() {
        // ...
      }
    }
    
    // good - static methods aren't expected to use this
    class Foo {
      static bar() {
        console.log('bar');
      }
    }
  • The # notation provides true encapsulation by making the variables truly private to the class. They are not accessible from outside the class, not even through inheritance or by using reflection techniques.

    // bad
    class Foo {
      constructor(bar) {
        this._bar = bar; // Using _ for "private" variable
      }
    }
    
    // good
    class Foo {
      #bar; // Using # for private variable
    
      constructor(bar) {
        this.#bar = bar; // Defining private variable using #
      }
    }

Modules

  • Why? Modules are the future, let’s start using the future now.

    // bad
    const AirbnbStyleGuide = require('./AirbnbStyleGuide');
    module.exports = AirbnbStyleGuide.es6;
    
    // ok
    import AirbnbStyleGuide from './AirbnbStyleGuide';
    export default AirbnbStyleGuide.es6;
    
    // best
    import { es6 } from './AirbnbStyleGuide';
    export default es6;
  • Why? This makes sure you have a single default export.

    // bad
    import * as AirbnbStyleGuide from './AirbnbStyleGuide';
    
    // good
    import AirbnbStyleGuide from './AirbnbStyleGuide';
  • Why? Although the one-liner is concise, having one clear way to import and one clear way to export makes things consistent.

    // bad
    // filename es6.js
    export { es6 as default } from './AirbnbStyleGuide';
    
    // good
    // filename es6.js
    import { es6 } from './AirbnbStyleGuide';
    export default es6;
  • Why? Having multiple lines that import from the same path can make code harder to maintain.

    // bad
    import foo from 'foo';
    // … some other imports … //
    import { named1, named2 } from 'foo';
    
    // good
    import foo, { named1, named2 } from 'foo';
    
    // good
    import foo, {
      named1,
      named2,
    } from 'foo';
  • Why? Mutation should be avoided in general, but in particular when exporting mutable bindings. While this technique may be needed for some special cases, in general, only constant references should be exported.

    // bad
    let foo = 3;
    export { foo };
    
    // good
    const foo = 3;
    export { foo };
  • Why? To encourage more files that only ever export one thing, which is better for readability and maintainability.

    // bad
    export function foo() {}
    
    // good
    export default function foo() {}
  • Why? Since imports are hoisted, keeping them all at the top prevents surprising behavior.

    // bad
    import foo from 'foo';
    foo.init();
    
    import bar from 'bar';
    
    // good
    import foo from 'foo';
    import bar from 'bar';
    
    foo.init();
  • Why? The curly braces follow the same indentation rules as every other curly brace block in the style guide, as do the trailing commas.

    // bad
    import {longNameA, longNameB, longNameC, longNameD, longNameE} from 'path';
    
    // good
    import {
      longNameA,
      longNameB,
      longNameC,
      longNameD,
      longNameE,
    } from 'path';
  • Why? Since using Webpack syntax in the imports couples the code to a module bundler. Prefer using the loader syntax in webpack.config.js.

    // bad
    import fooSass from 'css!sass!foo.scss';
    import barCss from 'style!css!bar.css';
    
    // good
    import fooSass from 'foo.scss';
    import barCss from 'bar.css';
  • Why? Including extensions inhibits refactoring, and inappropriately hardcodes implementation details of the module you're importing in every consumer.

    // bad
    import foo from './foo.js';
    import bar from './bar.jsx';
    import baz from './baz/index.jsx';
    
    // good
    import foo from './foo';
    import bar from './bar';
    import baz from './baz';

Iterators and Generators

  • Why? This enforces our immutable rule. Dealing with pure functions that return values is easier to reason about than side effects.

    Use map() / every() / filter() / find() / findIndex() / reduce() / some() / ... to iterate over arrays, and Object.keys() / Object.values() / Object.entries() to produce arrays so you can iterate over objects.

    const numbers = [1, 2, 3, 4, 5];
    
    // bad
    let sum = 0;
    for (let num of numbers) {
      sum += num;
    }
    sum === 15;
    
    // good
    let sum = 0;
    numbers.forEach((num) => {
      sum += num;
    });
    sum === 15;
    
    // best (use the functional force)
    const sum = numbers.reduce((total, num) => total + num, 0);
    sum === 15;
    
    // bad
    const increasedByOne = [];
    for (let i = 0; i < numbers.length; i++) {
      increasedByOne.push(numbers[i] + 1);
    }
    
    // good
    const increasedByOne = [];
    numbers.forEach((num) => {
      increasedByOne.push(num + 1);
    });
    
    // best (keeping it functional)
    const increasedByOne = numbers.map((num) => num + 1);
  • Why? They don’t transpile well to ES5.

  • Why? function and * are part of the same conceptual keyword - * is not a modifier for function, function* is a unique construct, different from function.

    // bad
    function * foo() {
      // ...
    }
    
    // bad
    const bar = function * () {
      // ...
    };
    
    // bad
    const baz = function *() {
      // ...
    };
    
    // bad
    const quux = function*() {
      // ...
    };
    
    // bad
    function*foo() {
      // ...
    }
    
    // bad
    function *foo() {
      // ...
    }
    
    // very bad
    function
    *
    foo() {
      // ...
    }
    
    // very bad
    const wat = function
    *
    () {
      // ...
    };
    
    // good
    function* foo() {
      // ...
    }
    
    // good
    const foo = function* () {
      // ...
    };

Properties

  • const luke = {
      jedi: true,
      age: 28,
    };
    
    // bad
    const isJedi = luke['jedi'];
    
    // good
    const isJedi = luke.jedi;
  • const luke = {
      jedi: true,
      age: 28,
    };
    
    function getProp(prop) {
      return luke[prop];
    }
    
    const isJedi = getProp('jedi');
  • // bad
    const binary = Math.pow(2, 10);
    
    // good
    const binary = 2 ** 10;

Variables

  • // bad
    superPower = new SuperPower();
    
    // good
    const superPower = new SuperPower();
  • Why? It’s easier to add new variable declarations this way, and you never have to worry about swapping out a ; for a , or introducing punctuation-only diffs. You can also step through each declaration with the debugger, instead of jumping through all of them at once.

    // bad
    const items = getItems(),
        goSportsTeam = true,
        dragonball = 'z';
    
    // bad
    // (compare to above, and try to spot the mistake)
    const items = getItems(),
        goSportsTeam = true;
        dragonball = 'z';
    
    // good
    const items = getItems();
    const goSportsTeam = true;
    const dragonball = 'z';
  • Why? This is helpful when later on you might need to assign a variable depending on one of the previously assigned variables.

    // bad
    let i, len, dragonball,
        items = getItems(),
        goSportsTeam = true;
    
    // bad
    let i;
    const items = getItems();
    let dragonball;
    const goSportsTeam = true;
    let len;
    
    // good
    const goSportsTeam = true;
    const items = getItems();
    let dragonball;
    let i;
    let length;
  • Why? let and const are block scoped and not function scoped.

    // bad - unnecessary function call
    function checkName(hasName) {
      const name = getName();
    
      if (hasName === 'test') {
        return false;
      }
    
      if (name === 'test') {
        this.setName('');
        return false;
      }
    
      return name;
    }
    
    // good
    function checkName(hasName) {
      if (hasName === 'test') {
        return false;
      }
    
      const name = getName();
    
      if (name === 'test') {
        this.setName('');
        return false;
      }
    
      return name;
    }
  • Why? Chaining variable assignments creates implicit global variables.

    // bad
    (function example() {
      // JavaScript interprets this as
      // let a = ( b = ( c = 1 ) );
      // The let keyword only applies to variable a; variables b and c become
      // global variables.
      let a = b = c = 1;
    }());
    
    console.log(a); // throws ReferenceError
    console.log(b); // 1
    console.log(c); // 1
    
    // good
    (function example() {
      let a = 1;
      let b = a;
      let c = a;
    }());
    
    console.log(a); // throws ReferenceError
    console.log(b); // throws ReferenceError
    console.log(c); // throws ReferenceError
    
    // the same applies for `const`
  • Why? Per the eslint documentation, unary increment and decrement statements are subject to automatic semicolon insertion and can cause silent errors with incrementing or decrementing values within an application. It is also more expressive to mutate your values with statements like num += 1 instead of num++ or num ++. Disallowing unary increment and decrement statements also prevents you from pre-incrementing/pre-decrementing values unintentionally which can also cause unexpected behavior in your programs.

    // bad
    
    const array = [1, 2, 3];
    let num = 1;
    num++;
    --num;
    
    let sum = 0;
    let truthyCount = 0;
    for (let i = 0; i < array.length; i++) {
      let value = array[i];
      sum += value;
      if (value) {
        truthyCount++;
      }
    }
    
    // good
    
    const array = [1, 2, 3];
    let num = 1;
    num += 1;
    num -= 1;
    
    const sum = array.reduce((a, b) => a + b, 0);
    const truthyCount = array.filter(Boolean).length;
  • Why? Linebreaks surrounding = can obfuscate the value of an assignment.

    // bad
    const foo =
      superLongLongLongLongLongLongLongLongFunctionName();
    
    // bad
    const foo
      = 'superLongLongLongLongLongLongLongLongString';
    
    // good
    const foo = (
      superLongLongLongLongLongLongLongLongFunctionName()
    );
    
    // good
    const foo = 'superLongLongLongLongLongLongLongLongString';
  • Why? Variables that are declared and not used anywhere in the code are most likely an error due to incomplete refactoring. Such variables take up space in the code and can lead to confusion by readers.

    // bad
    
    const some_unused_var = 42;
    
    // Write-only variables are not considered as used.
    let y = 10;
    y = 5;
    
    // A read for a modification of itself is not considered as used.
    let z = 0;
    z = z + 1;
    
    // Unused function arguments.
    function getX(x, y) {
        return x;
    }
    
    // good
    
    function getXPlusY(x, y) {
      return x + y;
    }
    
    const x = 1;
    const y = a + 2;
    
    alert(getXPlusY(x, y));
    
    // 'type' is ignored even if unused because it has a rest property sibling.
    // This is a form of extracting an object that omits the specified keys.
    const { type, ...coords } = data;
    // 'coords' is now the 'data' object without its 'type' property.

Hoisting

  • // we know this wouldn’t work (assuming there
    // is no notDefined global variable)
    function example() {
      console.log(notDefined); // => throws a ReferenceError
    }
    
    // creating a variable declaration after you
    // reference the variable will work due to
    // variable hoisting. Note: the assignment
    // value of `true` is not hoisted.
    function example() {
      console.log(declaredButNotAssigned); // => undefined
      var declaredButNotAssigned = true;
    }
    
    // the interpreter is hoisting the variable
    // declaration to the top of the scope,
    // which means our example could be rewritten as:
    function example() {
      let declaredButNotAssigned;
      console.log(declaredButNotAssigned); // => undefined
      declaredButNotAssigned = true;
    }
    
    // using const and let
    function example() {
      console.log(declaredButNotAssigned); // => throws a ReferenceError
      console.log(typeof declaredButNotAssigned); // => throws a ReferenceError
      const declaredButNotAssigned = true;
    }
  • function example() {
      console.log(anonymous); // => undefined
    
      anonymous(); // => TypeError anonymous is not a function
    
      var anonymous = function () {
        console.log('anonymous function expression');
      };
    }
  • function example() {
      console.log(named); // => undefined
    
      named(); // => TypeError named is not a function
    
      superPower(); // => ReferenceError superPower is not defined
    
      var named = function superPower() {
        console.log('Flying');
      };
    }
    
    // the same is true when the function name
    // is the same as the variable name.
    function example() {
      console.log(named); // => undefined
    
      named(); // => TypeError named is not a function
    
      var named = function named() {
        console.log('named');
      };
    }
  • function example() {
      superPower(); // => Flying
    
      function superPower() {
        console.log('Flying');
      }
    }
  • Why? When variables, classes, or functions are declared after being used, it can harm readability since a reader won't know what a thing that's referenced is. It's much clearer for a reader to first encounter the source of a thing (whether imported from another module, or defined in the file) before encountering a use of the thing.

    // bad
    
    // Variable a is being used before it is being defined.
    console.log(a); // this will be undefined, since while the declaration is hoisted, the initialization is not
    var a = 10;
    
    // Function fun is being called before being defined.
    fun();
    function fun() {}
    
    // Class A is being used before being defined.
    new A(); // ReferenceError: Cannot access 'A' before initialization
    class A {
    }
    
    // `let` and `const` are hoisted, but they don't have a default initialization.
    // The variables 'a' and 'b' are in a Temporal Dead Zone where JavaScript
    // knows they exist (declaration is hoisted) but they are not accessible
    // (as they are not yet initialized).
    
    console.log(a); // ReferenceError: Cannot access 'a' before initialization
    console.log(b); // ReferenceError: Cannot access 'b' before initialization
    let a = 10;
    const b = 5;
    
    
    // good
    
    var a = 10;
    console.log(a); // 10
    
    function fun() {}
    fun();
    
    class A {
    }
    new A();
    
    let a = 10;
    const b = 5;
    console.log(a); // 10
    console.log(b); // 5

Comparison Operators and Equality

    • Objects evaluate to true

    • Undefined evaluates to false

    • Null evaluates to false

    • Booleans evaluate to the value of the boolean

    • Numbers evaluate to false if +0, -0, or NaN, otherwise true

    • Strings evaluate to false if an empty string '', otherwise true

    if ([0] && []) {
      // true
      // an array (even an empty one) is an object, objects will evaluate to true
    }
  • // bad
    if (isValid === true) {
      // ...
    }
    
    // good
    if (isValid) {
      // ...
    }
    
    // bad
    if (name) {
      // ...
    }
    
    // good
    if (name !== '') {
      // ...
    }
    
    // bad
    if (collection.length) {
      // ...
    }
    
    // good
    if (collection.length > 0) {
      // ...
    }
  • Why? Lexical declarations are visible in the entire switch block but only get initialized when assigned, which only happens when its case is reached. This causes problems when multiple case clauses attempt to define the same thing.

    // bad
    switch (foo) {
      case 1:
        let x = 1;
        break;
      case 2:
        const y = 2;
        break;
      case 3:
        function f() {
          // ...
        }
        break;
      default:
        class C {}
    }
    
    // good
    switch (foo) {
      case 1: {
        let x = 1;
        break;
      }
      case 2: {
        const y = 2;
        break;
      }
      case 3: {
        function f() {
          // ...
        }
        break;
      }
      case 4:
        bar();
        break;
      default: {
        class C {}
      }
    }
  • // bad
    const foo = maybe1 > maybe2
      ? "bar"
      : value1 > value2 ? "baz" : null;
    
    // split into 2 separated ternary expressions
    const maybeNull = value1 > value2 ? 'baz' : null;
    
    // better
    const foo = maybe1 > maybe2
      ? 'bar'
      : maybeNull;
    
    // best
    const foo = maybe1 > maybe2 ? 'bar' : maybeNull;
  • // bad
    const foo = a ? a : b;
    const bar = c ? true : false;
    const baz = c ? false : true;
    const quux = a != null ? a : b;
    
    // good
    const foo = a || b;
    const bar = !!c;
    const baz = !c;
    const quux = a ?? b;
  • Why? This improves readability and clarifies the developer’s intention.

    // bad
    const foo = a && b < 0 || c > 0 || d + 1 === 0;
    
    // bad
    const bar = a ** b - 5 % d;
    
    // bad
    // one may be confused into thinking (a || b) && c
    if (a || b && c) {
      return d;
    }
    
    // bad
    const bar = a + b / c * d;
    
    // good
    const foo = (a && b < 0) || c > 0 || (d + 1 === 0);
    
    // good
    const bar = a ** b - (5 % d);
    
    // good
    if (a || (b && c)) {
      return d;
    }
    
    // good
    const bar = a + (b / c) * d;
  • Why? It provides precision by distinguishing null/undefined from other falsy values, enhancing code clarity and predictability.

    // bad
    const value = 0 ?? 'default';
    // returns 0, not 'default'
    
    // bad
    const value = '' ?? 'default';
    // returns '', not 'default'
    
    // good
    const value = null ?? 'default';
    // returns 'default'
    
    // good
    const user = {
      name: 'John',
      age: null
    };
    const age = user.age ?? 18;
    // returns 18

Blocks

  • // bad
    if (test)
      return false;
    
    // good
    if (test) return false;
    
    // good
    if (test) {
      return false;
    }
    
    // bad
    function foo() { return false; }
    
    // good
    function bar() {
      return false;
    }
  • // bad
    if (test) {
      thing1();
      thing2();
    }
    else {
      thing3();
    }
    
    // good
    if (test) {
      thing1();
      thing2();
    } else {
      thing3();
    }
  • // bad
    function foo() {
      if (x) {
        return x;
      } else {
        return y;
      }
    }
    
    // bad
    function cats() {
      if (x) {
        return x;
      } else if (y) {
        return y;
      }
    }
    
    // bad
    function dogs() {
      if (x) {
        return x;
      } else {
        if (y) {
          return y;
        }
      }
    }
    
    // good
    function foo() {
      if (x) {
        return x;
      }
    
      return y;
    }
    
    // good
    function cats() {
      if (x) {
        return x;
      }
    
      if (y) {
        return y;
      }
    }
    
    // good
    function dogs(x) {
      if (x) {
        if (z) {
          return y;
        }
      } else {
        return z;
      }
    }

Control Statements

  • Why? Requiring operators at the beginning of the line keeps the operators aligned and follows a pattern similar to method chaining. This also improves readability by making it easier to visually follow complex logic.

    // bad
    if ((foo === 123 || bar === 'abc') && doesItLookGoodWhenItBecomesThatLong() && isThisReallyHappening()) {
      thing1();
    }
    
    // bad
    if (foo === 123 &&
      bar === 'abc') {
      thing1();
    }
    
    // bad
    if (foo === 123
      && bar === 'abc') {
      thing1();
    }
    
    // bad
    if (
      foo === 123 &&
      bar === 'abc'
    ) {
      thing1();
    }
    
    // good
    if (
      foo === 123
      && bar === 'abc'
    ) {
      thing1();
    }
    
    // good
    if (
      (foo === 123 || bar === 'abc')
      && doesItLookGoodWhenItBecomesThatLong()
      && isThisReallyHappening()
    ) {
      thing1();
    }
    
    // good
    if (foo === 123 && bar === 'abc') {
      thing1();
    }
  • // bad
    !isRunning && startRunning();
    
    // good
    if (!isRunning) {
      startRunning();
    }

Comments

  • // bad
    // make() returns a new element
    // based on the passed in tag name
    //
    // @param {String} tag
    // @return {Element} element
    function make(tag) {
    
      // ...
    
      return element;
    }
    
    // good
    /**
     * make() returns a new element
     * based on the passed-in tag name
     */
    function make(tag) {
    
      // ...
    
      return element;
    }
  • // bad
    const active = true;  // is current tab
    
    // good
    // is current tab
    const active = true;
    
    // bad
    function getType() {
      console.log('fetching type...');
      // set the default type to 'no type'
      const type = this.type || 'no type';
    
      return type;
    }
    
    // good
    function getType() {
      console.log('fetching type...');
    
      // set the default type to 'no type'
      const type = this.type || 'no type';
    
      return type;
    }
    
    // also good
    function getType() {
      // set the default type to 'no type'
      const type = this.type || 'no type';
    
      return type;
    }
  • // bad
    //is current tab
    const active = true;
    
    // good
    // is current tab
    const active = true;
    
    // bad
    /**
     *make() returns a new element
     *based on the passed-in tag name
     */
    function make(tag) {
    
      // ...
    
      return element;
    }
    
    // good
    /**
     * make() returns a new element
     * based on the passed-in tag name
     */
    function make(tag) {
    
      // ...
    
      return element;
    }
  • class Calculator extends Abacus {
      constructor() {
        super();
    
        // FIXME: shouldn’t use a global here
        total = 0;
      }
    }
  • class Calculator extends Abacus {
      constructor() {
        super();
    
        // TODO: total should be configurable by an options param
        this.total = 0;
      }
    }

Whitespace

  • // bad
    function foo() {
    ∙∙∙∙let name;
    }
    
    // bad
    function bar() {
    ∙let name;
    }
    
    // good
    function baz() {
    ∙∙let name;
    }
  • // bad
    function test(){
      console.log('test');
    }
    
    // good
    function test() {
      console.log('test');
    }
    
    // bad
    dog.set('attr',{
      age: '1 year',
      breed: 'Bernese Mountain Dog',
    });
    
    // good
    dog.set('attr', {
      age: '1 year',
      breed: 'Bernese Mountain Dog',
    });
  • // bad
    if(isJedi) {
      fight ();
    }
    
    // good
    if (isJedi) {
      fight();
    }
    
    // bad
    function fight () {
      console.log ('Swooosh!');
    }
    
    // good
    function fight() {
      console.log('Swooosh!');
    }
  • // bad
    const x=y+5;
    
    // good
    const x = y + 5;
  • // bad
    import { es6 } from './AirbnbStyleGuide';
      // ...
    export default es6;
    // bad
    import { es6 } from './AirbnbStyleGuide';
      // ...
    export default es6;↵
    ↵
    // good
    import { es6 } from './AirbnbStyleGuide';
      // ...
    export default es6;↵
  • // bad
    $('#items').find('.selected').highlight().end().find('.open').updateCount();
    
    // bad
    $('#items').
      find('.selected').
        highlight().
        end().
      find('.open').
        updateCount();
    
    // good
    $('#items')
      .find('.selected')
        .highlight()
        .end()
      .find('.open')
        .updateCount();
    
    // bad
    const leds = stage.selectAll('.led').data(data).enter().append('svg:svg').classed('led', true)
        .attr('width', (radius + margin) * 2).append('svg:g')
        .attr('transform', `translate(${radius + margin}, ${radius + margin})`)
        .call(tron.led);
    
    // good
    const leds = stage.selectAll('.led')
        .data(data)
      .enter().append('svg:svg')
        .classed('led', true)
        .attr('width', (radius + margin) * 2)
      .append('svg:g')
        .attr('transform', `translate(${radius + margin}, ${radius + margin})`)
        .call(tron.led);
    
    // good
    const leds = stage.selectAll('.led').data(data);
    const svg = leds.enter().append('svg:svg');
    svg.classed('led', true).attr('width', (radius + margin) * 2);
    const g = svg.append('svg:g');
    g.attr('transform', `translate(${radius + margin}, ${radius + margin})`).call(tron.led);
  • // bad
    if (foo) {
      return bar;
    }
    return baz;
    
    // good
    if (foo) {
      return bar;
    }
    
    return baz;
    
    // bad
    const obj = {
      foo() {
      },
      bar() {
      },
    };
    return obj;
    
    // good
    const obj = {
      foo() {
      },
    
      bar() {
      },
    };
    
    return obj;
    
    // bad
    const arr = [
      function foo() {
      },
      function bar() {
      },
    ];
    return arr;
    
    // good
    const arr = [
      function foo() {
      },
    
      function bar() {
      },
    ];
    
    return arr;
  • // bad
    function bar() {
    
      console.log(foo);
    
    }
    
    // bad
    if (baz) {
    
      console.log(quux);
    } else {
      console.log(foo);
    
    }
    
    // bad
    class Foo {
    
      constructor(bar) {
        this.bar = bar;
      }
    }
    
    // good
    function bar() {
      console.log(foo);
    }
    
    // good
    if (baz) {
      console.log(quux);
    } else {
      console.log(foo);
    }
  • // bad
    class Person {
      constructor(fullName, email, birthday) {
        this.fullName = fullName;
    
    
        this.email = email;
    
    
        this.setAge(birthday);
      }
    
    
      setAge(birthday) {
        const today = new Date();
    
    
        const age = this.getAge(today, birthday);
    
    
        this.age = age;
      }
    
    
      getAge(today, birthday) {
        // ..
      }
    }
    
    // good
    class Person {
      constructor(fullName, email, birthday) {
        this.fullName = fullName;
        this.email = email;
        this.setAge(birthday);
      }
    
      setAge(birthday) {
        const today = new Date();
        const age = getAge(today, birthday);
        this.age = age;
      }
    
      getAge(today, birthday) {
        // ..
      }
    }
  • // bad
    function bar( foo ) {
      return foo;
    }
    
    // good
    function bar(foo) {
      return foo;
    }
    
    // bad
    if ( foo ) {
      console.log(foo);
    }
    
    // good
    if (foo) {
      console.log(foo);
    }
  • // bad
    const foo = [ 1, 2, 3 ];
    console.log(foo[ 0 ]);
    
    // good
    const foo = [1, 2, 3];
    console.log(foo[0]);
  • // bad
    const foo = {clark: 'kent'};
    
    // good
    const foo = { clark: 'kent' };
  • Why? This ensures readability and maintainability.

    // bad
    const foo = jsonData && jsonData.foo && jsonData.foo.bar && jsonData.foo.bar.baz && jsonData.foo.bar.baz.quux && jsonData.foo.bar.baz.quux.xyzzy;
    
    // bad
    $.ajax({ method: 'POST', url: 'https://airbnb.com/', data: { name: 'John' } }).done(() => console.log('Congratulations!')).fail(() => console.log('You have failed this city.'));
    
    // good
    const foo = jsonData
      && jsonData.foo
      && jsonData.foo.bar
      && jsonData.foo.bar.baz
      && jsonData.foo.bar.baz.quux
      && jsonData.foo.bar.baz.quux.xyzzy;
    
    // better
    const foo = jsonData
      ?.foo
      ?.bar
      ?.baz
      ?.quux
      ?.xyzzy;
    
    // good
    $.ajax({
      method: 'POST',
      url: 'https://airbnb.com/',
      data: { name: 'John' },
    })
      .done(() => console.log('Congratulations!'))
      .fail(() => console.log('You have failed this city.'));
  • // bad
    function foo() {return true;}
    if (foo) { bar = 0;}
    
    // good
    function foo() { return true; }
    if (foo) { bar = 0; }
  • // bad
    const foo = 1,bar = 2;
    const arr = [1 , 2];
    
    // good
    const foo = 1, bar = 2;
    const arr = [1, 2];
  • // bad
    obj[foo ]
    obj[ 'foo']
    const x = {[ b ]: a}
    obj[foo[ bar ]]
    
    // good
    obj[foo]
    obj['foo']
    const x = { [b]: a }
    obj[foo[bar]]
  • // bad
    func ();
    
    func
    ();
    
    // good
    func();
  • // bad
    const obj = { foo : 42 };
    const obj2 = { foo:42 };
    
    // good
    const obj = { foo: 42 };
  • // bad - multiple empty lines
    const x = 1;
    
    
    const y = 2;
    
    // bad - 2+ newlines at end of file
    const x = 1;
    const y = 2;
    
    
    // bad - 1+ newline(s) at beginning of file
    
    const x = 1;
    const y = 2;
    
    // good
    const x = 1;
    const y = 2;
    

Commas

  • // bad
    const story = [
        once
      , upon
      , aTime
    ];
    
    // good
    const story = [
      once,
      upon,
      aTime,
    ];
    
    // bad
    const hero = {
        firstName: 'Ada'
      , lastName: 'Lovelace'
      , birthYear: 1815
      , superPower: 'computers'
    };
    
    // good
    const hero = {
      firstName: 'Ada',
      lastName: 'Lovelace',
      birthYear: 1815,
      superPower: 'computers',
    };
  • // bad - git diff without trailing comma
    const hero = {
         firstName: 'Florence',
    -    lastName: 'Nightingale'
    +    lastName: 'Nightingale',
    +    inventorOf: ['coxcomb chart', 'modern nursing']
    };
    
    // good - git diff with trailing comma
    const hero = {
         firstName: 'Florence',
         lastName: 'Nightingale',
    +    inventorOf: ['coxcomb chart', 'modern nursing'],
    };
    // bad
    const hero = {
      firstName: 'Dana',
      lastName: 'Scully'
    };
    
    const heroes = [
      'Batman',
      'Superman'
    ];
    
    // good
    const hero = {
      firstName: 'Dana',
      lastName: 'Scully',
    };
    
    const heroes = [
      'Batman',
      'Superman',
    ];
    
    // bad
    function createHero(
      firstName,
      lastName,
      inventorOf
    ) {
      // does nothing
    }
    
    // good
    function createHero(
      firstName,
      lastName,
      inventorOf,
    ) {
      // does nothing
    }
    
    // good (note that a comma must not appear after a "rest" element)
    function createHero(
      firstName,
      lastName,
      inventorOf,
      ...heroArgs
    ) {
      // does nothing
    }
    
    // bad
    createHero(
      firstName,
      lastName,
      inventorOf
    );
    
    // good
    createHero(
      firstName,
      lastName,
      inventorOf,
    );
    
    // good (note that a comma must not appear after a "rest" element)
    createHero(
      firstName,
      lastName,
      inventorOf,
      ...heroArgs
    );

Semicolons

  • // bad - raises exception
    const luke = {}
    const leia = {}
    [luke, leia].forEach((jedi) => jedi.father = 'vader')
    
    // bad - raises exception
    const reaction = "No! That’s impossible!"
    (async function meanwhileOnTheFalcon() {
      // handle `leia`, `lando`, `chewie`, `r2`, `c3p0`
      // ...
    }())
    
    // bad - returns `undefined` instead of the value on the next line - always happens when `return` is on a line by itself because of ASI!
    function foo() {
      return
        'search your feelings, you know it to be foo'
    }
    
    // good
    const luke = {};
    const leia = {};
    [luke, leia].forEach((jedi) => {
      jedi.father = 'vader';
    });
    
    // good
    const reaction = 'No! That’s impossible!';
    (async function meanwhileOnTheFalcon() {
      // handle `leia`, `lando`, `chewie`, `r2`, `c3p0`
      // ...
    }());
    
    // good
    function foo() {
      return 'search your feelings, you know it to be foo';
    }

Type Casting and Coercion

  • // => this.reviewScore = 9;
    
    // bad
    const totalScore = new String(this.reviewScore); // typeof totalScore is "object" not "string"
    
    // bad
    const totalScore = this.reviewScore + ''; // invokes this.reviewScore.valueOf()
    
    // bad
    const totalScore = this.reviewScore.toString(); // isn’t guaranteed to return a string
    
    // good
    const totalScore = String(this.reviewScore);
  • Why? The parseInt function produces an integer value dictated by interpretation of the contents of the string argument according to the specified radix. Leading whitespace in string is ignored. If radix is undefined or 0, it is assumed to be 10 except when the number begins with the character pairs 0x or 0X, in which case a radix of 16 is assumed. This differs from ECMAScript 3, which merely discouraged (but allowed) octal interpretation. Many implementations have not adopted this behavior as of 2013. And, because older browsers must be supported, always specify a radix.

    const inputValue = '4';
    
    // bad
    const val = new Number(inputValue);
    
    // bad
    const val = +inputValue;
    
    // bad
    const val = inputValue >> 0;
    
    // bad
    const val = parseInt(inputValue);
    
    // good
    const val = Number(inputValue);
    
    // good
    const val = parseInt(inputValue, 10);
  • // good
    /**
     * parseInt was the reason my code was slow.
     * Bitshifting the String to coerce it to a
     * Number made it a lot faster.
     */
    const val = inputValue >> 0;
  • 2147483647 >> 0; // => 2147483647
    2147483648 >> 0; // => -2147483648
    2147483649 >> 0; // => -2147483647
  • const age = 0;
    
    // bad
    const hasAge = new Boolean(age);
    
    // good
    const hasAge = Boolean(age);
    
    // best
    const hasAge = !!age;

Naming Conventions

  • // bad
    function q() {
      // ...
    }
    
    // good
    function query() {
      // ...
    }
  • // bad
    const OBJEcttsssss = {};
    const this_is_my_object = {};
    function c() {}
    
    // good
    const thisIsMyObject = {};
    function thisIsMyFunction() {}
  • // bad
    function user(options) {
      this.name = options.name;
    }
    
    const bad = new user({
      name: 'nope',
    });
    
    // good
    class User {
      constructor(options) {
        this.name = options.name;
      }
    }
    
    const good = new User({
      name: 'yup',
    });
  • Why? JavaScript does not have the concept of privacy in terms of properties or methods. Although a leading underscore is a common convention to mean “private”, in fact, these properties are fully public, and as such, are part of your public API contract. This convention might lead developers to wrongly think that a change won’t count as breaking, or that tests aren’t needed. tl;dr: if you want something to be “private”, it must not be observably present.

    // bad
    this.__firstName__ = 'Panda';
    this.firstName_ = 'Panda';
    this._firstName = 'Panda';
    
    // good
    this.firstName = 'Panda';
    
    // good, in environments where WeakMaps are available
    // see https://kangax.github.io/compat-table/es6/#test-WeakMap
    const firstNames = new WeakMap();
    firstNames.set(this, 'Panda');
  • // bad
    function foo() {
      const self = this;
      return function () {
        console.log(self);
      };
    }
    
    // bad
    function foo() {
      const that = this;
      return function () {
        console.log(that);
      };
    }
    
    // good
    function foo() {
      return () => {
        console.log(this);
      };
    }
  • // file 1 contents
    class CheckBox {
      // ...
    }
    export default CheckBox;
    
    // file 2 contents
    export default function fortyTwo() { return 42; }
    
    // file 3 contents
    export default function insideDirectory() {}
    
    // in some other file
    // bad
    import CheckBox from './checkBox'; // PascalCase import/export, camelCase filename
    import FortyTwo from './FortyTwo'; // PascalCase import/filename, camelCase export
    import InsideDirectory from './InsideDirectory'; // PascalCase import/filename, camelCase export
    
    // bad
    import CheckBox from './check_box'; // PascalCase import/export, snake_case filename
    import forty_two from './forty_two'; // snake_case import/filename, camelCase export
    import inside_directory from './inside_directory'; // snake_case import, camelCase export
    import index from './inside_directory/index'; // requiring the index file explicitly
    import insideDirectory from './insideDirectory/index'; // requiring the index file explicitly
    
    // good
    import CheckBox from './CheckBox'; // PascalCase export/import/filename
    import fortyTwo from './fortyTwo'; // camelCase export/import/filename
    import insideDirectory from './insideDirectory'; // camelCase export/import/directory name/implicit "index"
    // ^ supports both insideDirectory.js and insideDirectory/index.js
  • function makeStyleGuide() {
      // ...
    }
    
    export default makeStyleGuide;
  • const AirbnbStyleGuide = {
      es6: {
      },
    };
    
    export default AirbnbStyleGuide;
  • Why? Names are for readability, not to appease a computer algorithm.

    // bad
    import SmsContainer from './containers/SmsContainer';
    
    // bad
    const HttpRequests = [
      // ...
    ];
    
    // good
    import SMSContainer from './containers/SMSContainer';
    
    // good
    const HTTPRequests = [
      // ...
    ];
    
    // also good
    const httpRequests = [
      // ...
    ];
    
    // best
    import TextMessageContainer from './containers/TextMessageContainer';
    
    // best
    const requests = [
      // ...
    ];
  • Why? This is an additional tool to assist in situations where the programmer would be unsure if a variable might ever change. UPPERCASE_VARIABLES are letting the programmer know that they can trust the variable (and its properties) not to change.

    • What about all const variables? - This is unnecessary, so uppercasing should not be used for constants within a file. It should be used for exported constants however.

    • What about exported objects? - Uppercase at the top level of export (e.g. EXPORTED_OBJECT.key) and maintain that all nested properties do not change.

    // bad
    const PRIVATE_VARIABLE = 'should not be unnecessarily uppercased within a file';
    
    // bad
    export const THING_TO_BE_CHANGED = 'should obviously not be uppercased';
    
    // bad
    export let REASSIGNABLE_VARIABLE = 'do not use let with uppercase variables';
    
    // ---
    
    // allowed but does not supply semantic value
    export const apiKey = 'SOMEKEY';
    
    // better in most cases
    export const API_KEY = 'SOMEKEY';
    
    // ---
    
    // bad - unnecessarily uppercases key while adding no semantic value
    export const MAPPING = {
      KEY: 'value'
    };
    
    // good
    export const MAPPING = {
      key: 'value',
    };

Accessors

  • // bad
    class Dragon {
      get age() {
        // ...
      }
    
      set age(value) {
        // ...
      }
    }
    
    // good
    class Dragon {
      getAge() {
        // ...
      }
    
      setAge(value) {
        // ...
      }
    }
  • // bad
    if (!dragon.age()) {
      return false;
    }
    
    // good
    if (!dragon.hasAge()) {
      return false;
    }
  • class Jedi {
      constructor(options = {}) {
        const lightsaber = options.lightsaber || 'blue';
        this.set('lightsaber', lightsaber);
      }
    
      set(key, val) {
        this[key] = val;
      }
    
      get(key) {
        return this[key];
      }
    }

Events

  • // bad
    $(this).trigger('listingUpdated', listing.id);
    
    // ...
    
    $(this).on('listingUpdated', (e, listingID) => {
      // do something with listingID
    });

    prefer:

    // good
    $(this).trigger('listingUpdated', { listingID: listing.id });
    
    // ...
    
    $(this).on('listingUpdated', (e, data) => {
      // do something with data.listingID
    });

jQuery

  • // bad
    const sidebar = $('.sidebar');
    
    // good
    const $sidebar = $('.sidebar');
    
    // good
    const $sidebarBtn = $('.sidebar-btn');
  • // bad
    function setSidebar() {
      $('.sidebar').hide();
    
      // ...
    
      $('.sidebar').css({
        'background-color': 'pink',
      });
    }
    
    // good
    function setSidebar() {
      const $sidebar = $('.sidebar');
      $sidebar.hide();
    
      // ...
    
      $sidebar.css({
        'background-color': 'pink',
      });
    }
  • // bad
    $('ul', '.sidebar').hide();
    
    // bad
    $('.sidebar').find('ul').hide();
    
    // good
    $('.sidebar ul').hide();
    
    // good
    $('.sidebar > ul').hide();
    
    // good
    $sidebar.find('ul').hide();

ECMAScript 5 Compatibility

ECMAScript 6+ (ES 2015+) Styles

Standard Library

  • Why? The global isNaN coerces non-numbers to numbers, returning true for anything that coerces to NaN. If this behavior is desired, make it explicit.

    // bad
    isNaN('1.2'); // false
    isNaN('1.2.3'); // true
    
    // good
    Number.isNaN('1.2.3'); // false
    Number.isNaN(Number('1.2.3')); // true
  • Why? The global isFinite coerces non-numbers to numbers, returning true for anything that coerces to a finite number. If this behavior is desired, make it explicit.

    // bad
    isFinite('2e3'); // true
    
    // good
    Number.isFinite('2e3'); // false
    Number.isFinite(parseInt('2e3', 10)); // true

Testing

  • function foo() {
      return true;
    }
    • Whichever testing framework you use, you should be writing tests!

    • Strive to write many small pure functions, and minimize where mutations occur.

    • Be cautious about stubs and mocks - they can make your tests more brittle.

    • 100% test coverage is a good goal to strive for, even if it’s not always practical to reach it.

    • Whenever you fix a bug, write a regression test. A bug fixed without a regression test is almost certainly going to break again in the future.

Performance

  • Loading...

Resources

Learning ES6+

Read This

Tools

  • Code Style Linters

Other Style Guides

Other Styles

Primitives: When you access a primitive type, you work directly on its value. (Pass by Value)

Complex: When you access a complex type you work on a reference to its value. (Pass by Reference)

Use const for all of your references; avoid using var. eslint: ,

If you must reassign references, use let instead of var. eslint:

Note that both let and const are block-scoped, whereas var is function-scoped.

Use the literal syntax for object creation. eslint:

Use computed property names when creating objects with dynamic property names.

Use object method shorthand. eslint:

Use property value shorthand. eslint:

Group your shorthand properties at the beginning of your object declaration.

Only quote properties that are invalid identifiers. eslint:

Do not call Object.prototype methods directly, such as hasOwnProperty, propertyIsEnumerable, and isPrototypeOf. eslint:

Why? These methods may be shadowed by properties on the object in question - consider { hasOwnProperty: false } - or, the object may be a null object (Object.create(null)). In modern browsers that support ES2022, or with a polyfill such as , Object.hasOwn can also be used as an alternative to Object.prototype.hasOwnProperty.call.

Prefer the object spread syntax over to shallow-copy objects. Use the object rest parameter syntax to get a new object with certain properties omitted. eslint:

Use the literal syntax for array creation. eslint:

Use instead of direct assignment to add items to an array.

Use array spreads ... to copy arrays.

To convert an iterable object to an array, use spreads ... instead of

Use for converting an array-like object to an array.

Use instead of spread ... for mapping over iterables, because it avoids creating an intermediate array.

Use return statements in array method callbacks. It’s ok to omit the return if the function body consists of a single statement returning an expression without side effects, following . eslint:

Use line breaks after opening array brackets and before closing array brackets, if an array has multiple lines

Use object destructuring when accessing and using multiple properties of an object. eslint:

Use array destructuring. eslint:

Use object destructuring for multiple return values, not array destructuring.

Use single quotes '' for strings. eslint:

Strings that cause the line to go over 100 characters should not be written across multiple lines using string concatenation.

When programmatically building up strings, use template strings instead of concatenation. eslint:

Never use eval() on a string; it opens too many vulnerabilities. eslint:

Do not unnecessarily escape characters in strings. eslint:

Use named function expressions instead of function declarations. eslint: ,

Why? Function declarations are hoisted, which means that it’s easy - too easy - to reference the function before it is defined in the file. This harms readability and maintainability. If you find that a function’s definition is large or complex enough that it is interfering with understanding the rest of the file, then perhaps it’s time to extract it to its own module! Don’t forget to explicitly name the expression, regardless of whether or not the name is inferred from the containing variable (which is often the case in modern browsers or when using compilers such as Babel). This eliminates any assumptions made about the Error’s call stack. ()

Wrap immediately invoked function expressions in parentheses. eslint:

Never declare a function in a non-function block (if, while, etc). Assign the function to a variable instead. Browsers will allow you to do it, but they all interpret it differently, which is bad news bears. eslint:

Note: ECMA-262 defines a block as a list of statements. A function declaration is not a statement.

Never name a parameter arguments. This will take precedence over the arguments object that is given to every function scope.

Never use arguments, opt to use rest syntax ... instead. eslint:

Use default parameter syntax rather than mutating function arguments.

Avoid side effects with default parameters.

Always put default parameters last. eslint:

Never use the Function constructor to create a new function. eslint:

Spacing in a function signature. eslint:

Never mutate parameters. eslint:

Never reassign parameters. eslint:

Prefer the use of the spread syntax ... to call variadic functions. eslint:

Functions with multiline signatures, or invocations, should be indented just like every other multiline list in this guide: with each item on a line by itself, with a trailing comma on the last item. eslint:

When you must use an anonymous function (as when passing an inline callback), use arrow function notation. eslint: ,

If the function body consists of a single statement returning an without side effects, omit the braces and use the implicit return. Otherwise, keep the braces and use a return statement. eslint: ,

In case the expression spans over multiple lines, wrap it in parentheses for better readability.

Always include parentheses around arguments for clarity and consistency. eslint:

Avoid confusing arrow function syntax (=>) with comparison operators (<=, >=). eslint:

Enforce the location of arrow function bodies with implicit returns. eslint:

Always use class. Avoid manipulating prototype directly.

Use extends for inheritance.

Methods can return this to help with method chaining.

It’s okay to write a custom toString() method, just make sure it works successfully and causes no side effects.

Classes have a default constructor if one is not specified. An empty constructor function or one that just delegates to a parent class is unnecessary. eslint:

Avoid duplicate class members. eslint:

Class methods should use this or be made into a static method unless an external library or framework requires using specific non-static methods. Being an instance method should indicate that it behaves differently based on properties of the receiver. eslint:

Use the # notation and syntax for private properties in a class instead of _.

Always use modules (import/export) over a non-standard module system. You can always transpile to your preferred module system.

Do not use wildcard imports.

And do not export directly from an import.

Only import from a path in one place. eslint:

Do not export mutable bindings. eslint:

In modules with a single export, prefer default export over named export. eslint:

Put all imports above non-import statements. eslint:

Multiline imports should be indented just like multiline array and object literals. eslint:

Disallow Webpack loader syntax in module import statements. eslint:

Do not include JavaScript filename extensions eslint:

Don’t use iterators. Prefer JavaScript’s higher-order functions instead of loops like for-in or for-of. eslint:

Don’t use generators for now.

If you must use generators, or if you disregard , make sure their function signature is spaced properly. eslint:

Use dot notation when accessing properties. eslint:

Use bracket notation [] when accessing properties with a variable.

Use exponentiation operator ** when calculating exponentiations. eslint: .

Always use const or let to declare variables. Not doing so will result in global variables. We want to avoid polluting the global namespace. Captain Planet warned us of that. eslint:

Use one const or let declaration per variable or assignment. eslint:

Group all your consts and then group all your lets.

Assign variables where you need them, but place them in a reasonable place.

Don’t chain variable assignments. eslint:

Avoid using unary increments and decrements (++, --). eslint

Avoid linebreaks before or after = in an assignment. If your assignment violates , surround the value in parens. eslint .

Disallow unused variables. eslint:

var declarations get hoisted to the top of their closest enclosing function scope, their assignment does not. const and let declarations are blessed with a new concept called . It’s important to know why .

Anonymous function expressions hoist their variable name, but not the function assignment.

Named function expressions hoist the variable name, not the function name or the function body.

Function declarations hoist their name and the function body.

Variables, classes, and functions should be defined before they can be used. eslint:

For more information refer to by .

Use === and !== over == and !=. eslint:

Conditional statements such as the if statement evaluate their expression using coercion with the ToBoolean abstract method and always follow these simple rules:

Use shortcuts for booleans, but explicit comparisons for strings and numbers.

For more information see by Angus Croll.

Use braces to create blocks in case and default clauses that contain lexical declarations (e.g. let, const, function, and class). eslint:

Ternaries should not be nested and generally be single line expressions. eslint:

Avoid unneeded ternary statements. eslint:

When mixing operators, enclose them in parentheses. The only exception is the standard arithmetic operators: +, -, and ** since their precedence is broadly understood. We recommend enclosing / and * in parentheses because their precedence can be ambiguous when they are mixed. eslint:

The nullish coalescing operator (??) is a logical operator that returns its right-hand side operand when its left-hand side operand is null or undefined. Otherwise, it returns the left-hand side operand.

Use braces with all multiline blocks. eslint:

If you’re using multiline blocks with if and else, put else on the same line as your if block’s closing brace. eslint:

If an if block always executes a return statement, the subsequent else block is unnecessary. A return in an else if block following an if block that contains a return can be separated into multiple if blocks. eslint:

In case your control statement (if, while etc.) gets too long or exceeds the maximum line length, each (grouped) condition could be put into a new line. The logical operator should begin the line.

Don't use selection operators in place of control statements.

Use /** ... */ for multiline comments.

Use // for single line comments. Place single line comments on a newline above the subject of the comment. Put an empty line before the comment unless it’s on the first line of a block.

Start all comments with a space to make it easier to read. eslint:

Prefixing your comments with FIXME or TODO helps other developers quickly understand if you’re pointing out a problem that needs to be revisited, or if you’re suggesting a solution to the problem that needs to be implemented. These are different than regular comments because they are actionable. The actions are FIXME: -- need to figure this out or TODO: -- need to implement.

Use // FIXME: to annotate problems.

Use // TODO: to annotate solutions to problems.

Use soft tabs (space character) set to 2 spaces. eslint:

Place 1 space before the leading brace. eslint:

Place 1 space before the opening parenthesis in control statements (if, while etc.). Place no space between the argument list and the function name in function calls and declarations. eslint:

Set off operators with spaces. eslint:

End files with a single newline character. eslint:

Use indentation when making long method chains (more than 2 method chains). Use a leading dot, which emphasizes that the line is a method call, not a new statement. eslint:

Leave a blank line after blocks and before the next statement.

Do not pad your blocks with blank lines. eslint:

Do not use multiple blank lines to pad your code. eslint:

Do not add spaces inside parentheses. eslint:

Do not add spaces inside brackets. eslint:

Add spaces inside curly braces. eslint:

Avoid having lines of code that are longer than 100 characters (including whitespace). Note: per , long strings are exempt from this rule, and should not be broken up. eslint:

Require consistent spacing inside an open block token and the next token on the same line. This rule also enforces consistent spacing inside a close block token and previous token on the same line. eslint:

Avoid spaces before commas and require a space after commas. eslint:

Enforce spacing inside of computed property brackets. eslint:

Avoid spaces between functions and their invocations. eslint:

Enforce spacing between keys and values in object literal properties. eslint:

Avoid trailing spaces at the end of lines. eslint:

Avoid multiple empty lines, only allow one newline at the end of files, and avoid a newline at the beginning of files. eslint:

Leading commas: Nope. eslint:

Additional trailing comma: Yup. eslint:

Why? This leads to cleaner git diffs. Also, transpilers like Babel will remove the additional trailing comma in the transpiled code which means you don’t have to worry about the in legacy browsers.

Yup. eslint:

Why? When JavaScript encounters a line break without a semicolon, it uses a set of rules called to determine whether it should regard that line break as the end of a statement, and (as the name implies) place a semicolon into your code before the line break if it thinks so. ASI contains a few eccentric behaviors, though, and your code will break if JavaScript misinterprets your line break. These rules will become more complicated as new features become a part of JavaScript. Explicitly terminating your statements and configuring your linter to catch missing semicolons will help prevent you from encountering issues.

.

Perform type coercion at the beginning of the statement.

Strings: eslint:

Numbers: Use Number for type casting and parseInt always with a radix for parsing strings. eslint:

If for whatever reason you are doing something wild and parseInt is your bottleneck and need to use Bitshift for , leave a comment explaining why and what you’re doing.

Note: Be careful when using bitshift operations. Numbers are represented as , but bitshift operations always return a 32-bit integer (). Bitshift can lead to unexpected behavior for integer values larger than 32 bits. . Largest signed 32-bit Int is 2,147,483,647:

Booleans: eslint:

Avoid single letter names. Be descriptive with your naming. eslint:

Use camelCase when naming objects, functions, and instances. eslint:

Use PascalCase only when naming constructors or classes. eslint:

Do not use trailing or leading underscores. eslint:

Don’t save references to this. Use arrow functions or .

A base filename should exactly match the name of its default export.

Use camelCase when you export-default a function. Your filename should be identical to your function’s name.

Use PascalCase when you export a constructor / class / singleton / function library / bare object.

Acronyms and initialisms should always be all uppercased, or all lowercased.

You may optionally uppercase a constant only if it (1) is exported, (2) is a const (it can not be reassigned), and (3) the programmer can trust it (and its nested properties) to never change.

Accessor functions for properties are not required.

Do not use JavaScript getters/setters as they cause unexpected side effects and are harder to test, maintain, and reason about. Instead, if you do make accessor functions, use getVal() and setVal('hello').

If the property/method is a boolean, use isVal() or hasVal().

It’s okay to create get() and set() functions, but be consistent.

When attaching data payloads to events (whether DOM events or something more proprietary like Backbone events), pass an object literal (also known as a "hash") instead of a raw value. This allows a subsequent contributor to add more data to the event payload without finding and updating every handler for the event. For example, instead of:

Prefix jQuery object variables with a $.

Cache jQuery lookups.

For DOM queries use Cascading $('.sidebar ul') or parent > child $('.sidebar > ul').

Use find with scoped jQuery object queries.

Refer to ’s ES5 .

This is a collection of links to the various ES6+ features.

Do not use that have not reached stage 3.

Why? , and they are subject to change or to be withdrawn entirely. We want to use JavaScript, and proposals are not JavaScript yet.

The contains utilities that are functionally broken but remain for legacy reasons.

Use Number.isNaN instead of global isNaN. eslint:

Use Number.isFinite instead of global isFinite. eslint:

Yup.

No, but seriously:

We primarily use and at Airbnb. is also used occasionally for small, separate modules.

-

-

Neutrino Preset -

- Christian Johansen

- Ross Allen

- JeongHoon Byun

- Ben Alman

https://npmjs.com/object.hasown
Discussion
JavaScript Scoping & Hoisting
Ben Cherry
trailing comma problem
Automatic Semicolon Insertion
Read more
They are not finalized
Standard Library
mocha
jest
tape
On Layout & Web Performance
String vs Array Concat
Try/Catch Cost In a Loop
Bang Function
jQuery Find vs Context, Selector
innerHTML vs textContent for script text
Long String Concatenation
Are JavaScript functions like map(), reduce(), and filter() optimized for traversing arrays?
Latest ECMA spec
ExploringJS
ES6 Compatibility Table
Comprehensive Overview of ES6 Features
JavaScript Roadmap
Standard ECMA-262
ESlint
Airbnb Style .eslintrc
JSHint
Airbnb Style .jshintrc
@neutrinojs/airbnb
Google JavaScript Style Guide
Google JavaScript Style Guide (Old)
jQuery Core Style Guidelines
Principles of Writing Consistent, Idiomatic JavaScript
StandardJS
Naming this in nested functions
Conditional Callbacks
Popular JavaScript Coding Conventions on GitHub
Multiple var statements in JavaScript, not superfluous
Babel
babel-preset-airbnb
airbnb-browser-shims
javascript
Table of Contents
Quick Tips
Types
References
Objects
Arrays
Destructuring
Strings
Functions
Arrow Functions
Classes and Constructors
Modules
Iterators and Generators
Properties
Variables
Hoisting
Comparison Operators and Equality
Blocks
Control Statements
Comments
Whitespace
Commas
Semicolons
Type Casting and Coercion
Naming Conventions
Accessors
Events
jQuery
ECMAScript 5 Compatibility
ECMAScript 6+ (ES 2015+) Styles
Standard Library
Testing
Performance
Resources
1.1
1.2
⬆ back to top
prefer-const
no-const-assign
2.1
no-var
2.2
2.3
⬆ back to top
no-new-object
3.1
3.2
object-shorthand
3.3
object-shorthand
3.4
3.5
quote-props
3.6
no-prototype-builtins
3.7
Object.assign
prefer-object-spread
3.8
⬆ back to top
no-array-constructor
4.1
Array#push
4.2
4.3
Array.from
4.4
Array.from
4.5
Array.from
4.6
array-callback-return
4.7
8.2
4.8
⬆ back to top
prefer-destructuring
5.1
prefer-destructuring
5.2
5.3
⬆ back to top
quotes
6.1
6.2
prefer-template
template-curly-spacing
6.3
no-eval
6.4
no-useless-escape
6.5
⬆ back to top
func-style
func-names
7.1
wrap-iife
7.2
no-loop-func
7.3
7.4
7.5
prefer-rest-params
7.6
7.7
7.8
default-param-last
7.9
no-new-func
7.10
space-before-function-paren
space-before-blocks
7.11
no-param-reassign
7.12
no-param-reassign
7.13
prefer-spread
7.14
function-paren-newline
7.15
⬆ back to top
prefer-arrow-callback
arrow-spacing
8.1
expression
arrow-parens
arrow-body-style
8.2
8.3
arrow-parens
8.4
no-confusing-arrow
8.5
implicit-arrow-linebreak
8.6
⬆ back to top
9.1
9.2
9.3
9.4
no-useless-constructor
9.5
no-dupe-class-members
9.6
class-methods-use-this
9.7
9.8
⬆ back to top
10.1
10.2
10.3
no-duplicate-imports
10.4
import/no-mutable-exports
10.5
import/prefer-default-export
10.6
import/first
10.7
object-curly-newline
10.8
import/no-webpack-loader-syntax
10.9
import/extensions
10.10
⬆ back to top
no-iterator
no-restricted-syntax
11.1
11.2
generator-star-spacing
11.3
our advice
⬆ back to top
dot-notation
12.1
12.2
prefer-exponentiation-operator
12.3
⬆ back to top
no-undef
prefer-const
13.1
one-var
13.2
13.3
13.4
no-multi-assign
13.5
no-plusplus
13.6
max-len
operator-linebreak
13.7
no-unused-vars
13.8
⬆ back to top
Temporal Dead Zones (TDZ)
typeof is no longer safe
14.1
14.2
14.3
14.4
no-use-before-define
14.5
⬆ back to top
eqeqeq
15.1
15.2
15.3
Truth, Equality, and JavaScript
15.4
no-case-declarations
15.5
no-nested-ternary
15.6
no-unneeded-ternary
15.7
no-mixed-operators
15.8
15.9
⬆ back to top
nonblock-statement-body-position
16.1
brace-style
16.2
no-else-return
16.3
⬆ back to top
17.1
17.2
⬆ back to top
18.1
18.2
spaced-comment
18.3
18.4
18.5
18.6
⬆ back to top
indent
19.1
space-before-blocks
19.2
keyword-spacing
19.3
space-infix-ops
19.4
eol-last
19.5
newline-per-chained-call
no-whitespace-before-property
19.6
19.7
padded-blocks
19.8
no-multiple-empty-lines
19.9
space-in-parens
19.10
array-bracket-spacing
19.11
object-curly-spacing
19.12
max-len
19.13
above
block-spacing
19.14
comma-spacing
19.15
computed-property-spacing
19.16
func-call-spacing
19.17
key-spacing
19.18
no-trailing-spaces
19.19
no-multiple-empty-lines
19.20
⬆ back to top
comma-style
20.1
comma-dangle
20.2
⬆ back to top
semi
21.1
⬆ back to top
22.1
no-new-wrappers
22.2
radix
no-new-wrappers
22.3
performance reasons
22.4
64-bit values
source
Discussion
22.5
no-new-wrappers
22.6
⬆ back to top
id-length
23.1
camelcase
23.2
new-cap
23.3
no-underscore-dangle
23.4
Function#bind
23.5
23.6
23.7
23.8
23.9
23.10
⬆ back to top
24.1
24.2
24.3
24.4
⬆ back to top
25.1
⬆ back to top
26.1
26.2
jsPerf
26.3
26.4
⬆ back to top
Kangax
compatibility table
27.1
⬆ back to top
28.1
Arrow Functions
Classes
Object Shorthand
Object Concise
Object Computed Properties
Template Strings
Destructuring
Default Parameters
Rest
Array Spreads
Let and Const
Exponentiation Operator
Iterators and Generators
Modules
TC39 proposals
28.2
⬆ back to top
no-restricted-globals
29.1
no-restricted-globals
29.2
⬆ back to top
30.1
30.2
⬆ back to top
⬆ back to top